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Abstract. This article describes a method for vision-based autonomous convoy driving. In auton-
omous convoy driving, a robotic vehicle autonomously pursues another vehicle. In our method,
pursuit is achieved by visual guidance, by visually tracking a target mounted on the back of the
pursued vehicle. Visual tracking must be robust since a failure will lead to catastrophic results. To
make our system as reliable as possible, several techniques are used. In particular, the quality of
the extracted features are taken into account and uncertainty measures are entered into all compu-
tations including a best linear unbiased estimate (BLUE) of the target position in each separate im-
age and a polynomial least mean square fit (LMSF) to the time history- of the target position to
estimate the target’s motion parameters. In actual experiments, robust autonomous convoy driving
has been demonstrated in the presence of various lighting conditions including shadowing, other
traffic, turns at intersections, curves and hills. A continuous autonomous convoy drive of over 20

miles was successful, at speeds averaging between 50 and 75 km/h.

Key words: convoy driving, caravan driving, autonomous navigation, mobile robots, visual track-

ing.

1. Introduction

In convoy driving, a lead vehicle is visually tracked from the vantage of a pursuing chase vehicle
as shown in Figure 1. It is extremely important that the visual tracking algorithm is robust, since
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Figure 1. Autonomous convoy driving




the estimates of the lead vehicle position are used to autonomously steer the chase vehicle. In par-
ticular, the algorithm must maintain tracking in the presence of outdoor lighting conditions includ-
ing various forms of shadowing on the target and roadway. As well, the algorithm must be able
maintain tracking in the presence of a wide variety of background outdoor scenery including other

vehicles, trees, buildings, etc.

To achieve reliability, our method is strongly motivated by statistical principles. It is recognized
that low-level feature segmentation is not completely reliable. Individual features on the target
may become confused with shadows and various entities in the background. These failures are typ-
ically localized in space and time. To reduce the influence of the local failures, our method strives
to combine observations over space and time, with appropriate weighting to account for uncertain-
ty, tq obtain the best posmble global estimate of the target’s position and motion. The target’s posi-
thIl in each i image is computed using a best linear unbiased estimate (BLUE) from the individual
featﬁre locations. The motion parameters of the target are then estimated by computing a least
mean polynomial fit (LMSF) to the time history of the target. Using this method, we have achieved

robust visual tracking for the purposes of convoy driving including a continuous experimental run

of over 20 miles.

Other methods that have been developed for autonomous convoy driving are somewhat limited in
their performance. The system developed by Kehtarnavaz, et. al. [11] has been tested over short
distances (on the order of a mile) and over a limited variety of roads and at maximum speeds of 20
mi/h. The system developed by Zielke, et. al [24][27] has been tested while the chase vehicle was
driven manually. In one test, it was reported that during a 5 minute drive on the Autobahn, in a to-
tal of 1594 images, the pursued vehicle was correctly located 94.7% of the time. The system devel-
oped by Kories, et. al [13] has only been tested on videotaped image sequences. The method
developed by Dickmanns, et. al. [6][7] has been tested in a limited fashion in which convoy driv-
ing was reported at speeds of approximately 5 m/s and over short distances and short durations of

time (approximately 90 seconds).



In the broader context of visual target tracking, many methods have been developed and imple-
mented [8][4][S][14][19][1]{21][22]. With the exception of the ALVINN system for road follow-
ing [21][22], none of these systems have reported sustained visual tracking in an outdoor

environment comparable in duration to the method described in this paper.

2, Processing

An overview of the entire processing scheme is shown schematically in Figure 2. A single CCD
camera provides video images to the system at the rate of 30 hertz. Image data flows through the
diagram as indicated by the arrows. There are several successive stages of computation:

1. Edge extraction - Extract position and orientations for all edge points.

2. Data association - Determine likely groupings of edge points to each model feature.

3. Feature measurement - Use grouped edge points to determine location of each feature.

4. Feature aggregation - Determine the overall location of the target by fitting a model of the target
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Figure 2. Processing Overview




to the conglomerate of computed feature locations using a BLUE estimate.

5. Update motion models - Update motion parameters (e.g. velocity, acceleration) of the object by
computing a polynomial LMSF to the time history of the target.

6. Predict target location in next image - Extrapolate motion model to predict target location in
next image. Use predicted target location to determine corresponding predicted feature locations.
The predicted feature locations are then used for data association in the next image.

7. Servo control - Servo control of the steering on the autonomous vehicle such that it pursues the

path of the lead vehicle. This is described in [25] {15] [17] .

These processing steps are described in the remainder of this section.

2.1, Geometric model of target

chfnetrically,-"the target is modelled in terms of its edge features i.e., light-to-dark transitions.
Each of these edges is modelled by a line segment. The corners given by the intersection of the line
segments are also maintained in the representation. One such model is shown in Figure 3 for the

target shown in Figure 4.

Figure 3. Model of target

Figure 4. Target



2.2. Initialization of tracking
Registration between the model and the target is initially established by a teleoperator. Using a
graphic representation of the model superimposed on the live video image, the teleoperator posi-

tions and scales the model such that it graphically aligns with the image of the target.

2.3. Edge detection

In the first processing step, edge detection, is performed on the image. The image is separately
convolved‘with the directional 3x3 Sobel gradient operators. The resulting gradient images are
used to compute edge magnitude and edge direction for every pixel. The magnitude image is then
thresholded. A list of the pixel locations of detected edges (i.e., those that satisfy the edge magni-

tude threshold) is compiled.

2.4. Data Association
Many of the detected edges are not caused by model features. There are many entities in a scene
that can give rise to edges. In outdoor scenes in which vehicle following was performed, strong

edges were produced by telephone poles, shadows and power lines.

The purpose of this processing is to determine which edge pixels best match each model line seg-
ment. In order for an edge pixel to be grouped to one of the line segments in the model, it must sat-
isfy two criteria. The first criterion is the two-dimensional spatial proximity of the edge point to the
predicted location of the line segment. (The predicted locations of the line segments are computed
during the previous processing cycle from the prediction of the overall target location, {6) in Figure
2.) The second criterion is the similarity of direction of the edge with the predicted angular orienta-
tion of the line segment. An edge pixel is discarded if it does not satisfy both criteria for any line

segment features.

In each image, many edges can be discarded immediately on the basis of the spatial proximity cri-
terion. This is done by eliminating all edges that fall outside a window of interest. This eliminates

many, but not all edges that violate the spatial proximity criterion. For all edge points falling within




the window of interest, the two data association criteria are applied against each line segment on a

point by point basis for each thresholded edge point.

2.5. Feature Measurement: Line Features
After edge pixels have been grouped to each line segment feature, the overall location of the line

feature is computed such that it gives the best fit to its group of associated edge pixels.

The location of each line segment feature is represented by two parameters (m, ). One of two rep-
resentations is chosen, depending on whether the feature is predicted to be oriented closer to the

horizontal or vertical:

y=mx+b horizontal line representation

(1

x=my+b vertical line representation

#
If th¢ horizontal line representation is used, (m, b) are determined by minimizing the least squares

i
residual in the following set of overdetermined linear equations:
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(x;, y;) are the coordinates of the i™ edge point.
n is the total number of edge points.
For a vertical line representation, the x and y coordinates of the edge points are interchanged in

this equation.

There are many methods that exist for minimizing the least squares residual in this set of equa-

tions. One such solution is expressed by:

i = (ATA) 1ATp ©

2.6. Feature Confidence

Some computed line segment locations will be more accurate and reliable than others. The differ-



ences in reliability are consequences of the fallibility of the data association algorithm. Since edge
pixels are only discriminated on the basis of spatial and angular proximity, it is unlikely that all

spurious edges will be excluded from the computation given by equation (3).

Uncertainty in the computed feature location can be approximated by an empirical measurement of

variance:

o2 = }I(b—Ai)T(b-Ai:) @)

A large variance corresponds to a scattered distribution of edge points about the computed feature
location. Such a scattering of edge points usually indicates the presence of spurious edge points.
This will happen when edge pixels from two visual entities (e.g. the desired target edge and an un-

degired background edge or shadow edge) are grouped to a model feature.

2.7, Feature Measurement: Corner Features

The location of ali corner features are computed by the intersection of the appropriate pairs of line
segment features computed in section 2.5. For example, the point of intersection v = (v,, v,)) of two
line segments (horizontal representation) is computed by solving the following set of equations for

V.
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Since corner position is a linear function of the line parameters, the covariance in v, C,, is then giv-

en by [9][20]:
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2.8. Feature Aggregation

In this stage of processing, the overall target location is computed such that it gives the best fit to
the conglomerate of computed corner feature locations. The target is assumed to be moving with
only 3 degrees of positional freedom with respect to the camera (orientation of the target is as-
sumed fixed with respect to the camera). More specifically, the target location can be determined

by finding (c,, Cy 1/¢,) such that this weighted least squares residual, J;, is minimized:
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n is the number of corner features

Uy c%nd uy; are the model coordinates of the i™ corner feature when the object is viewed from a
nom%nal range.

Vyi and vy; are computed coordinates for the i comer.

For the purpose of illustration, it is assumed that the covariance matrices, C,;, are diagonal. See
eq. (8) for the general case.

Py and py account for camera calibration and the nominal range of object used for u,; and u,,;

The first summation corresponds to horizontal positioning of the object and the second summation
corresponds to vertical positioning of the object. The range to the object ¢, enters into both summa-
tions. For example, the term, El-px, can be thought of a scale factor that is a function of range. Thus
z
in each summation, the center of the object and the inverse of range are determined such that the
computed feature locations are brought into correspondence with the object model. The object
model consists of corner locations given at a nominal range. The weighting by the inverse of vari-
ance in corner feature location will then give the best linear unbiased estimate (BLUE) [10] in the

object’s position.

To solve for the coordinates of the object position, (7) can be rewritten in matrix form:



|—vxl 10 Py
Vo) 01pyu, C, 0000 c.
. 0 .00 0 c
— _ T ~1 - b, = A .= C, = ¥, = v
Jy= (b=AZ)TC, (b-Ax) b= ’ r=|00.00 Al (8)
S 0 00. 0 -
Ven 10pu, 0 000C, ‘2
Vynl [0 1 pyay,

The solution for x¢that minimizes J; can be expressed by:
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2.9. Confidence in object location
The reliability of the computed target location will vary from image to image. Reliability will de-
pend on how well the object’s features are discriminated and on the accuracy of the uncertainty

measures (section 2.6).

Si[ice object location is a linear function of feature location, covariance in object location, Cj,

could be computed by propagating the covariance in feature location (similar to (6)) by:

¢, = LCLT (10)
However, Cr was derived from an empirical estimate of the variance and therefore is not necessar-
ily an accurate measure of the true statistical variance in each measured feature location. More-
over, Cr is based strictly on image data in the local neighborhood of the feature. It does not
account for how much each feature contributes to the overall least squares error, J; in the object lo-

cation computed in (9) (i.e., bfis completely absent from (10)).

A better expression for the variance in feature location can be determined by accounting for the
global consistency of all computed feature locations. The global consistency of the features can be
measured by the least squares error in the target’s location normalized by the trace of Cy

_ (') (b-4p)

© 7 Tirace (G, (11)

This is a measure of the overall accuracy in fitting the target model to the conglomerate of feature




locations. Each component of e, ¢;, measures the consistency of the j’h feature measurement to the
overall object location as computed by z. Using this information, the empirical covariance in the

target’s location can be computed by:
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2.10. Update of motion model and prediction

For the purposes of tracking, motion along each coordinate direction can be considered a separate
time sequence which can be filtered independently. One method of filtering a time sequence is to
perfgrm a least squares fit of the previous values of the sequence to polynomial function of time.
Sucl? a procedure is sometimes referred to as a polynomial least-mean-square-fit (LMSF) filter

[18];.&' To fit a 2™ order polynomial to previous values of a time sequence, v/t/, a least squares re-

sidual, J, is minimized through choice of polynomial coefficients, ag; a;, ay:

4
a 2
J= Z w[n](v[n] —(a0+aln+§n2)) Al-n (13)
n=0
t'= current time

This residual incorporates two forms of weighting. Older data carries increasingly less influence,
through use of an exponential decay profile, where older data is multiplied by larger powers of A:
0<i<1.0. In actual experiments, we choose A = 0.77 Each datum also carries an individual weight
given by wfn]. For each coordinate direction, this is chosen to be the inverse of the computed co-
variance. For example, in filtering the x coordinate, w = ‘ﬁ .

The computed parameters ag, a;, a; represent the target position, velocity and acceleration, respec-

tively, in one coordinate direction. These motion parameters are then used to predict the location of

the target in the next image. For example, the predicted value of v[f+1] is given by:



vl +1] =a0+a,(:+1)+%2(:+1)2 (14)

Given the predicted location of the object, the predicted locations of each individual feature are de-
termined. These predicted feature locations are then used by the data association algorithm to pro-

cess data from the next image as described in 2.4.

To solve for the model parameters in (13), ag, a;, a,, the square root information filter algorithm is
used [3]. This 1s a recursive method; that is, each time there is a new data point, the solution is re-
computed using only this new datum explicitly. All past data are completely represented by the

previous solution and the estimated covariance in the previous solution.

In the frequency domain, the relationship between predicted and measured values, #[s] and v[s]

respectively, (prediction of 1 cycle and w (r) = 1 for all n) is given by the following transfer func-

%

tiop (see [23] for derivation):
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The frequency domain characteristics of this transfer function for the case of one sample period of

1.4

prediction are illustrated in Figure 5, Figure 6, and Figure 7.The most salient characteristics of
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thes‘_{sf plots are magnitude overshoot at high frequencies and frequency-dependent prediction time.

t

It cah also be shown that this transfer function (15) is equivalent to an o—B—y filter [23]:
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Equivalency of (15) and (16) can be achieved [23] with:
o=1-33 B = 15-150=15A2+1.5A3 Y = 2-6h+ 607203 (17

For a more complete discussion of the frequency domain characteristics of o—fB—y filters refer to

[26].

3. Implementation and hardware

The complete autonomous vehicle system used for convoy driving consists of several major ele-
ments: a vehicle instrumented for computer control, a camera, and computer system as shown in

Figure 8.

The vehicle used in these experiments was an Army High Mobility Multipurpose Wheeled Vehicle
(HMMW\[) customized for computer control [25]. This vehicle has computer controlled actua-
tor%'s to control steering, throttle, and brake. For the convoy driving experiments, only the steering
was controlled autonomously, while brake and throttle were manually controlled. A standard CCD

camera was mounted above the cab of the vehicle to provide video images to the computer system

SPARCstation2 PC
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Figure 8. Hardware configuration




through a radio video link.

The computer system resides in a mobile computing and communications van [16] . The computer
system consists of a Pipelined Image Processing Engine (PIPE), a VME multiprocessor system,

and a Sun SPARCstation 2.

The incoming video images are supplied to PIPE. PIPE is a special purpose image processing en-
gine that was originally developed at NIST [12]. The incoming video is digitized on PIPE to pro-
vide 242 x 256 images with 8 bit grey scale resolution. PIPE performs edge detection and produces
a list of edge pixels for each image. This list is made available to the VME system via the PIPE-
VME interface card. Program development for PIPE was done on a personal computer (PC) using

the ASPIPE graphical programming language [2].

The temaining processing is divided among microprocessors connected on a VME bus. A 68020
processor is dedicated as a driver to the PIPE-VME interface card. This processor reads the edge
list from the PIPE-VME interface card and copies it to globally accessible memory. Three 68030s
in parallel preform the data association and feature measurement on different sets of features. The
remainder of the vision processing is performed serially on a 68030 processor. A second 68020
performs computation for steering and communicates with the vehicle through a radio link. A third
68020 is used for the operator interface, data logging, and as a controller of a Matrox frame grab-
ber. The Matrox frame grabber is used to create a graphic overlay showing the computed location
of the target superimposed on to the live video image. Communication between microprocessors
on the VME bus is achieved through semaphored common memory residing on a Performance
Technologies’ PT-200 2 Mbyte RAM board. Program development and cross-compiliation for the
VME system is done on a Sun SPARCstation 2. All programming was done in the Ada language
using the Verdix development and debugging system. Code is downloaded through ethernet and

monitored through RS-232 connections from each microprocessor muitiplexed to the SPARCsta-

1. Certain commercial equipment, instruments, or materials are identified in this paper in order to adequately specify ex-
perimental procedure. Such identification does not imply recommendation or endorsement by NIST, nor does it imply
that the materials or equipment identified are necessarily best for the purpose.



ence of a wide variety of background outdoor scenery including other vehicles, trees, buildings.
Using the algorithm the vehicle was able to traverse a full variety of turns at various intersections,
in which the target deviated as much as 20 degrees in orientation from its assumed fixed orienta-
tion. A continuous convoy drive over a 20 mile loop (approximately 33 km) was completed cover-
ing the NIST campus, and several roads in Gaithersburg and Germantown, Maryland, including
Muddy Branch Road, Great Seneca Highway, Route 118, Key West Ave., and Darnestown Road.
During this test, speed of the vehicle ranged from 30 to 45 miles/h (50 to 75 km/h} and following
distances ranged from 5 to 15 meters. Other experiments showed that at following distances of
greater than 20 meters, the target became too small in the image to be reliably tracked. A wide field
of view lens was used to accommodate turns at intersections. This lens limited the resolution and
ther%by the ability to track targets at great distances. The algorithm also became susceptible to fail-
ure 1f the vehicle drove on very uneven, bumpy terrain causing large sudden perturbations of the

caméra or near dusk if the vehicle drove directly into the sun causing saturation of the image.

5. Summary and Conclusion

This article has described the vision processing for a system that has been successfully used for au-
tonomous convoy driving. This algorithm was designed with the goal of achieving robust tracking.
To achieve reliable performance, the method was motivated by statistical principles using a best
linear unbiased estimate (BLUE) for target position and using a least mean polynomial fit (LMSF)
to estimate the motion of the target. Using this method we have demonstrated autonomous convoy
driving under a wide variety of testing conditions and demonstrated its reliability through a 20

miles continuous convoy drive over a variety of typical roads.
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